Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis.
نویسندگان
چکیده
The peptides alpha-melanocyte stimulating hormone (alpha-MSH) and oxytocin, when administered centrally, produce similar behavioral effects. alpha-MSH induces Fos expression in supraoptic oxytocin neurons, and alpha-MSH melanocortin-4 receptors (MC4Rs) are highly expressed in the supraoptic nucleus, suggesting that alpha-MSH and oxytocin actions are not independent. Here we investigated the effects of alpha-MSH on the activity of supraoptic neurons. We confirmed that alpha-MSH induces Fos expression in the supraoptic nucleus when injected centrally and demonstrated that alpha-MSH also stimulates Fos expression in the nucleus when applied locally by retrodialysis. Thus alpha-MSH-induced Fos expression is not associated with electrophysiological excitation of supraoptic neurons because central injection of alpha-MSH or selective MC4 receptor agonists inhibited the electrical activity of oxytocin neurons in the supraoptic nucleus recorded in vivo. Consistent with these observations, oxytocin secretion into the bloodstream decreased after central injection of alpha-MSH. However, MC4R ligands induced substantial release of oxytocin from dendrites in isolated supraoptic nuclei. Because dendritic oxytocin release can be triggered by changes in [Ca2+]i, we measured [Ca2+]i responses in isolated supraoptic neurons and found that MC4R ligands induce a transient [Ca2+]i increase in oxytocin neurons. This response was still observed in low extracellular Ca2+ concentration and probably reflects mobilization of [Ca2+]i from intracellular stores rather than entry via voltage-gated channels. Taken together, these results show for the first time that a peptide, here alpha-MSH, can induce differential regulation of dendritic release and systemic secretion of oxytocin, accompanied by dissociation of Fos expression and electrical activity.
منابع مشابه
Alcohol and endocannabinoids: neuroendocrine interactions in the reproductive axis.
Marihuana and alcohol consumption affect adversely reproduction by inhibiting the hypothalamic-pituitary-gonadal axis. The endocannabinoid system, present in the central nervous system and in peripheral tissues, participates in the regulation of hormones involved in the reproductive physiology such as luteinizing hormone, prolactin and oxytocin. This system is activated in response to pathophys...
متن کاملOxytocin, Feeding, and Satiety
Oxytocin neurons have a physiological role in food intake and energy balance. Central administration of oxytocin is powerfully anorexigenic, reducing food intake and meal duration. The central mechanisms underlying this effect of oxytocin have become better understood in the past few years. Parvocellular neurons of the paraventricular nucleus project to the caudal brainstem to regulate feeding ...
متن کاملα-melanocyte-stimulating hormone (α- MSH) inhibits oxytocin cells and reduces peripheral release of oxytocin, but induces oxytocin release from dendrites. Dendritic oxytocin release can be triggered by agents
We recently showed that central injections of-melanocyte-stimulating hormone (-MSH) inhibits oxytocin cells and reduces peripheral release of oxytocin, but induces oxytocin release from dendrites. Dendritic oxytocin release can be triggered by agents that mobilize intracellular calcium. Oxytocin, like-MSH, mobilises intracellular calcium stores in oxytocin cells, and triggers presynaptic inhibi...
متن کاملThe Involvement of Voltage-Operated Calcium Channels in Somato-Dendritic Oxytocin Release
Magnocellular neurons of the supraoptic nucleus (SON) secrete oxytocin and vasopressin from axon terminals in the neurohypophysis, but they also release large amounts of peptide from their somata and dendrites, and this can be regulated both by activity-dependent Ca(2+) influx and by mobilization of intracellular Ca(2+). This somato-dendritic release can also be primed by agents that mobilise i...
متن کاملThe involvement of actin, calcium channels and exocytosis proteins in somato-dendritic oxytocin and vasopressin release
Hypothalamic magnocellular neurons release vasopressin and oxytocin not only from their axon terminals into the blood, but also from their somata and dendrites into the extracellular space of the brain, and this can be regulated independently. Differential release of neurotransmitters from different compartments of a single neuron requires subtle regulatory mechanisms. Somato-dendritic, but not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 32 شماره
صفحات -
تاریخ انتشار 2003